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Abstract

We introduce the focused confinement method, a reaction coordinate-free simula-

tion approach for the calculation of conformational free energies. These are obtained

in a series of restrained simulations that transform part of the molecule of interest to

independent harmonic oscillators resulting in mixed harmonic-anharmonic states. It is

shown that the free energy difference between these mixed states can be readily calcu-

lated through the construction of chimeric trajectories. By focusing the confinement

to the conformationally active region, the method requires fewer restrained simulations

than the traditional confinement method, which eases the treatment of large systems.

The accuracy and efficiency of the method is demonstrated for implicitly and explicitly

solvated systems.

1 Introduction

By providing a quantitative measure of the likelihood of states, conformational free ener-

gies are key to the understanding of protein stability, allostery and dynamics. It is often

not possible to calculate conformational free energy differences from unbiased simulations
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due to limited sampling. Instead, free energy differences are generally obtained from en-

hanced sampling simulations, in which the Hamiltonian and/or temperature is modified in

order to enforce multiple transitions between states.1–11 Since this biasing can be accounted

for by reweighting techniques, such as the multistate Bennett acceptance ratio estimator

(MBAR),12 accurate free energy differences can be computed from these simulations.

While many enhanced sampling techniques exist,1–11 the confinement method (CM)13–19

seems particularly appealing for the calculation of conformational free energy differences.

Rather than connecting the conformations of interest by a geometrical path, CM connects

them to harmonic oscillator (HO) states for which the free energies are known analytically.

By foregoing a geometrical pathway, CM does not require knowledge of the reaction coor-

dinate or order parameters that separate the conformations of interest; collective variables

that are typically difficult to identify for protein conformational changes. Moreover, along

geometrical pathways the conformations of interest are generally separated by free energy

barriers, which slow down sampling, but these barriers are not encountered in CM. CM does

not waste time on areas outside the basins of interest; in addition, by foregoing a geometrical

path, free energy differences between highly dissimilar states can be readily obtained. While

the method was originally developed for vacuum and implicit solvent simulations, it now also

works in explicit solvent.20,21 Comparisons show excellent agreement with umbrella sampling

for a series of systems in implicit and explicit water.19–21

Despite these attractive features, treatment of large systems is costly and very few CM

applications to proteins have been reported;22,23 and none in explicit solvent. In CM all

protein atoms need to be transformed to independent three-dimensional HOs. For large

systems this is problematic for two reasons. First, the free energy cost of this transformation

will grow with system size, since more atoms need to be transformed in larger systems. This

means that larger systems will require simulations at more intermediate restraint strengths

to accurately bridge the free energy gap. Moreover, each protein degree of freedom needs to

be fully equilibrated, which means that larger systems typically require longer simulations,
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especially at low restraint strengths. While the latter can be mitigated by applying mild

temperature replica exchange,19 the unfavorable scaling of CM severely impedes treatment

of proteins. Here we introduce the focused confinement method to solve this deficiency and

significantly ease the treatment of large systems.

2 Theory

Focused confinement exploits the fact that conformational changes are generally restricted to

a (small) portion of the molecule. This is exemplified by hydrophobin I, a protein for which

the conformational motion is limited to a loop while the rest of the molecule remains in the

same conformation (Fig. 1).24 Such loop motions are commonly observed in proteins. Even

for this relatively simple conformational change, the reaction coordinate or order parameters

are not easily identified a priori. In proteins that display larger conformational changes like

domain motions, significant parts of the protein also remain in the same conformation. This

observation suggests that computation time can be saved by focusing the confinement to the

conformationally active region.

Figure 1: Conformational states of hydrophobin I.24 a) Open. b) Closed.

This approach is illustrated and contrasted with traditional CM in Fig. 2. Solute AB has

two conformations: AaBx and AaBy. The structural difference between these conformations

is limited to the B region of the molecule, which is either in the x or y conformation, while

region A has the same a conformation in both states. The conformationally active (B) or

inactive (A) regions are not necessarily contiguous, and could in principle be interspersed
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throughout the entire molecule. In addition, the conformationally inactive region is not

necessarily rigid, and could be floppy as well; it just samples the same configurational space

in the AaBx and AaBy conformations.

Figure 2: Confinement and focused confinement methods. a) Thermodynamic cycle of the
confinement method. b) Thermodynamic cycle of the focused confinement method (black
arrows). Grey arrows indicate the extension of the thermodynamic cycle to allow for a
consistency check with CM; this consistency check is normally not needed. The meaning of
the free energy components is explained in the text.

Confinement method

In CM13–19 the free energy difference between the AaBy and AaBx conformations follows

from the thermodynamic cycle of Fig. 2a and is given by

∆F = ∆F1 −∆F2 + ∆F1d −∆F2d + ∆F3 + ∆Frr. (1)

∆F1 is the free energy of confinement: the free energy of transforming AaBx to the HO

state (AaBx)HO = AHO
a BHO

x . Similarly, ∆F2 is the free energy of confining AaBy. These free

4



energies are obtained in a series of molecular dynamics (MD) simulations by augmenting

the normal, unbiased potential by increasingly large restraining potentials. Denoting the

total mass of the solute by M , the solute atomic masses by mi and solute instantaneous

atomic positions by ri, the restraining potential for the jth simulation is given by Uconf =

2(πνj)
2
∑

imi|ri − r0i |2 = 2M(πνj)
2ρ2m, where the sum is over all solute atoms and the

strength of the restraint is given by frequency νj. The restraints are centered at atomic

positions r0i of reference structure (AaBx)0 = a0x0 or (AaBy)0 = a0y0, respectively, which is

generally taken from a geometry optimization or short unrestrained simulation. The mass-

weighted root mean square deviation of the solute with the reference structure is indicated

by ρm. To speed up convergence, the overall translation and rotation of the system are

removed during confinement by performing a mass-weighted best-fit alignment of the system

onto the reference structure at each simulation step.17 The contribution of these motions to

the free energy (∆Frr) is calculated from the partition function of the rigid rotor;15,19 the

translational contribution cancels when calculating the difference ∆F . In explicit solvent

simulations the restraints are active on the solute only and the solvent moves freely without

restraints.20,21

The maximum value of the restraining frequency (νmax) must be chosen high enough that

the solute reaches the HO state. This can be readily checked since for a purely harmonic

system 〈Uconf〉 = 1
2
NDOFkBT , where NDOF is the number of degrees of freedom, kB the

Boltzmann constant, T the temperature, and 〈.〉 indicates an average.17 By accumulating

Uconf, ∆F1 and ∆F2 can be readily obtained from thermodynamic integration13–17 or from

MBAR.20 To minimize the computational cost, the number of restraining frequencies (nν)

and their magnitude νi are chosen based on a distribution overlap criterion that allows

for larger spacings at high frequencies.19 This dictates a spacing such that the free energy

difference between neighboring frequencies is typically a few kcal/mol at the low frequency

side, and ten or more kcal/mol on the high frequency side.19 In practice, the proper spacing

can be deduced by monitoring the statistical error of the confinement free energy as a function

5



of frequency, and inserting extra frequencies whenever this error jumps unacceptably (i.e.

resulting in an overall confinement error larger than kBT ). Care must also be taken to adjust

the time step as a function of νj in order to sufficiently sample each oscillation period.

∆F1d and ∆F2d are desolvation free energies of the HO states. Since the HO state is so

heavily restrained, these correspond to the desolvation free energies of the reference states.20

For implicitly solvated systems these follow directly from the implicit solvent model, while

for explicitly solvated systems these can be assessed in two ways. It can be obtained from

free energy perturbation (FEP) simulations,21 using the Weeks, Chandler and Andersen

decomposition of the desolvation free energy into repulsive, dispersive and electrostatic com-

ponents.25,26 The electrostatic contributions of the desolvation free energies can also be

obtained from Poisson-Boltzmann (PB) calculations, and their non-polar contributions from

the solute’s solvent accessible surface area (SASA).20 In either case, calculated desolvation

free energies are for highly restrained, artificial states and can therefore not be compared to

experimental values.

∆F3 is the free energy difference between the HO states; since the partition function

of the harmonic oscillator is known analytically, this free energy difference can be readily

calculated. To simplify the treatment of CM and focused confinement, we will use the same

νmax for each leg. ∆F3 then equals the energy difference between the reference states.

Focused confinement method

The thermodynamic cycle used for focused confinement is shown by black arrows in Fig. 2b.

In focused confinement:

∆F = ∆F1a −∆F2a + ∆F1b −∆F2b + ∆F3a + ∆Frr. (2)

∆F1a (∆F2a) is the free energy of confining the conformationally active region B to x0 (y0)

while region A freely samples the a conformation without restraints; that is, the free energy
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of transforming region B to the HO state while region A can freely move. This free energy

is obtained in a series of restrained simulations using the confinement protocol described

above. ∆F1b and ∆F2b are the desolvation free energies of the AaBHO
x and AaBHO

y states,

respectively; the desolvation free energies of the solute in which region A can move freely

while region B is confined. These are obtained from averaging since, in contrast to CM,

region A can freely move.

In CM, the vertical free energy difference (∆F3) can be readily obtained from analytical

theory. In contrast, the vertical in focused confinement (∆F3a) cannot be calculated ana-

lytically, since the partition function of a mixed harmonic − anharmonic system cannot be

readily evaluated. Formally ∆F3a is given as:

∆F3a = −kBT ln

∫
rA ∈ a, rB ∈ y0

e−U(rA, rB)/kBTdrAdrB∫
rA ∈ a, rB ∈x0

e−U(rA, rB)/kBTdrAdrB
, (3)

where rA and rB are the coordinates of the A and B region, respectively, and U the potential

energy. The integrals are over the configurational space of the AaBHO
x and AaBHO

y states.

Region A is in the a conformation in both species and free to move; the rA portion of the

integral is therefore over the rA ∈ a region. Region B is purely harmonic. It samples around

the reference structure (which is x0 for AaBHO
x and y0 for AaBHO

y ) in a highly restrained

manner. In fact, the restraints on B in the AaBHO
x and AaBHO

y states are so high, that its

configurational space effectively collapsed into a single point, which is the reference structure.

This means that the integral in Eq. 3 can be replaced by:

∆F3a = −kBT ln

∫
rA ∈ a

e−U(rA, rB)/kBT δ(rB − y0)drAdrB∫
rA ∈ a

e−U(rA, rB)/kBT δ(rB − x0)drAdrB
= −kBT ln

∫
rA ∈ a

e−U(rA, y
0)/kBTdrA∫

rA ∈ a
e−U(rA, x0)/kBTdrA

,

(4)

where δ indicates the delta function. The ratio of integrals now corresponds to a ratio of

partition functions of A sampling a while B is held fixed at x0 or y0. This suggests that
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∆F3a can be readily obtained by performing two vacuum simulations: one in which B is fixed

to x0 while A freely samples a (the X simulation) and one in which B is fixed at y0 while

A freely samples a (the Y simulation). By collecting values of U(rXA , y
0), that is, energies

of snapshots of the X simulation in which the coordinates of B are replaced by y0, and

U(rYA , x
0), that is, energies of snapshots of the Y simulation in which the coordinates of B

are replaced by x0, the free energy difference ∆F3a can be calculated from either Bennett’s

overlapping distribution method27 or MBAR.12 This is feasible, since A samples the same

conformation in both systems. That means that the A configurations found in the X (or

Y ) simulation will be relevant for both AaBHO
x and AaBHO

y , ensuring large overlap of the

probability density functions. Few, if any, steric clashes will be observed when swapping the

B coordinates between the simulations when constructing the "chimeric" trajectories needed

for Bennett’s overlapping distribution method or MBAR.

Eq. 4 is fully consistent with CM: in the limit that both regions A and B are fully

harmonic and restrained to the reference state, both regions collapse onto the reference

structures and ∆F3a → U(a0y0)−U(a0x0), the energy difference between the reference states.

This equals the CM value for the vertical free energy when using the same νmax for each leg

(as done here). The correctness of the focused confinement method can be readily tested by

extending the thermodynamic cycle to encompass the end points of CM, the AHO
a BHO

x and

AHO
a BHO

y states (grey arrows of Fig. 2b). ∆F1c (∆F2c) is the free energy of transforming A

to the HO state while B is already fully harmonic; this free energy is calculated by focused

confinement. Since the configurational space of B has virtually collapsed to the reference

state, these focused confinement simulations are performed by treating B as fixed. This

allows for a larger time step in the low frequency regime. A comparison of Fig. 2a with 2b

shows that:

∆F1 −∆F1a −∆F1c = 0, (5)

∆F2 −∆F2a −∆F2c = 0, (6)
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and

∆F3 −∆F2d −∆F2c + ∆F2b −∆F3a −∆F1b + ∆F1c + ∆F1d = 0. (7)

These equalities, together with the calculated values of ∆F , serve as stringent tests of the

method.

The computational advantage of focused confinement over traditional CM is apparent

from Fig. 2 and Eq. 5-6. Clearly, ∆F1a < ∆F1 and ∆F2a < ∆F2. Since the free en-

ergy differences that need to be bridged are smaller in focused confinement, fewer restraint

frequencies need to be used, leading to significant savings in computer time.

3 Methods

The free energy differences between two conformers of sucrose and the capped Val-Ala-Pro-

Ala peptide were calculated by traditional CM and focused confinement. The reference

states were obtained from a clustering analysis of unbiased MD trajectories, followed by

restrained energy minimizations in which the conformationally inactive part of the molecule

was successively made identical across conformers by increasing the force constant of the

rmsd restraint. For sucrose the conformationally active region of the molecule corresponded

to the glucose unit (Fig. 3a). In the reference states, this glucose unit was either in the chair

or boat conformation. The conformationally inactive region corresponded to the fructose

unit, which had the same conformation in both reference states. For the VAPA peptide,

the conformationally inactive region corresponded to the first residue and the N, H, and

Cα atoms of the second residue, while the conformationally active region corresponded to

the remainder of the molecule (Fig. 3b). The prolyl peptide bond of the conformationally

active region was either in the cis or trans conformation in the reference states, while the

conformationally inactive region was identical.

The free energy differences between these conformations were calculated in vacuum, in

implicit solvent, and in explicit solvent. Confinement simulations for the consistency checks
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Figure 3: Reference states of sucrose (a) and the VAPA peptide (b). For sucrose the confor-
mationally active region corresponds to the glucose unit, with carbons shown in tan for the
chair (top) and orange for the boat conformation (bottom). Carbon atoms of the conforma-
tionally active region of the VAPA peptide are shown in tan for the cis (top) and orange for
the trans conformation (bottom). Carbon atoms of the conformationally inactive region are
shown in grey. Intramolecular hydrogen bonds are shown as orange lines.

of Fig. 2 and Eq. 5-7 were performed as well. The vacuum and explicit solvent simulations

used the CHARMM 36 force field.28–30 The explicit solvent simulations were performed in

the NVT ensemble, after heating and equilibration in the NPT ensemble at 1 bar. Cubic

boxes with a water layer of at least 10 Å around the solute were used, resulting in 737

TIP3P31 water molecules for the sucrose chair simulations, 754 for the sucrose boat, 865 for

the VAPA cis, and 1948 water molecules for the VAPA trans simulations. The particle-mesh

Ewald method was used for long-range electrostatic interactions32 and periodic boundary

conditions were in effect.

The desolvation free energies of the explicitly solvated systems were calculated in two

ways. The FEP method21 followed the protocol of Ref.26 as implemented in the PERT

module of the CHARMM program, with λ values of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9 and 1.0 for the electrostatic contribution to the desolvation free energy, ξ values of 0,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 for the dispersive contribution, and s values

of 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,

0.9, 0.95, and 1.0 for the repulsive contribution. In the FEP calculations the entire solute

was kept frozen for CM; for focused confinement the conformationally active region was
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kept frozen while the conformationally inactive region was unrestrained and free to move.

All windows were equilibrated for 200 ps and simulated for 100 ps in the NPT ensemble

with periodic boundary conditions and the particle-mesh Ewald method in effect. All free

energy components were calculated with MBAR. For the PB+SASA method,20 the polar

contribution to the desolvation free energies was calculated with the Poisson-Boltzmann

solver of the PBEQ module of the CHARMM program,33 using a grid spacing of 0.1 Å, a

dielectric constant of 80 for water, and an internal dielectric constant of 1. The nonpolar

contribution was calculated with GBMV.34 Bootstrapping was used to calculate average

PB+SASA solvation free energies and their standard deviations.

Since there is no desolvation for the vacuum systems, their desolvation free energies are

zero. The implicit solvent simulations used the CHARMM 22 force field35,36 and GBSW.37

The Born radii for sucrose were set to 1.02 times the van der Waals radii,38 while optimized

radii and adjusted backbone torsional energies were used for the peptide.39

All MD simulations were performed at 300 K using Langevin dynamics. To break correla-

tion times,19 simulations for the lowest three frequencies were performed using temperature

replica exchange,40 at temperatures of 300, 310, 320 and 330 K for the vacuum and implicit

solvent simulations, and 300, 305, 310, and 315 K for the explicit solvent simulations. Only

the lowest temperature replicas were used for calculating the free energies. The restrain-

ing frequencies were between 0.001 and 30 AKMA (0.02 and 613.5 ps−1). Time steps were

chosen such that there were at least 30 time steps per harmonic oscillator period. Systems

were equilibrated for 500,000 steps at each frequency before production. The same trajec-

tories could be used to calculate ∆F3a for the vacuum and explicit solvent systems, since

this free energy is calculated in vacuum and the force fields for the vacuum and explicit

solvent treatment were the same. Separate vacuum simulations were performed to calculate

∆F3a for the implicit solvent treatment. All simulations were performed with the CHARMM

program;33 MBAR and decorrelation analyses were performed with pymbar.12 Free energies

were calculated with MBAR using 500 uncorrelated frames per frequency for the vacuum
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and explicitly solvated systems and 250 uncorrelated frames per frequency for the implicitly

solvated systems. Conformational free energy differences for sucrose and the VAPA pep-

tide were also calculated by umbrella sampling.41 This involved restrained sampling of the θ

puckering angle42 and glucose-fructose O6-O6 and O5-O3 distances of sucrose, and restrained

sampling of the prolyl peptide bond of the VAPA peptide. Settings and conditions were as

in the confinement simulations.

The free energy difference between the closed and open state of hydrophobin I was cal-

culated by focused confinement in explicit water. The initial protein coordinates were taken

from protein data bank entry 2FZ6,24 chains B (open) and C (closed). Missing residues 5 and

6 of chain B were built using the coordinates of chain C. Protonation states were calculated

with the H++ server43 at pH 6.5, and reference states were obtained from restrained energy

minimizations. The setup and analysis was the same as for the sucrose and VAPA peptide

explicit solvent simulations described above, except that nν = 71 and temperature replica

exchange at 300, 304, 308, and 312 K was used for the lowest 14 frequencies. Desolvation

free energies were calculated with PB+SASA and FEP. The same protocols were followed as

in the calculations of the sugar and peptide, except that two additional λ values of 0.033 and

0.067 were used for the electrostatic component, and 3 additional s values of 0.167, 0.183,

and 0.225 for the repulsive contribution; moreover, all windows were equilibrated for 400 ps.

The closed and open state systems contained 3981 and 4925 water molecules, respectively.

Free energies were calculated using 250 uncorrelated frames per frequency.

4 Results

The free energy differences between the boat and chair conformations of sucrose and the trans

and cis conformations of the VAPA peptide (Fig. 3) were calculated by CM and focused

confinement in vacuum, implicit and explicit solvent. As illustrated for the explicit solvent

VAPA simulations in Fig. 4, the HO states were reached at νmax. The free energy differences
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(∆F ), as well as their free energy components are listed in Table 1. ∆F was calculated with

Eq. 1 for CM and Eq. 2 for focused confinement; ∆∆F indicates the difference between

the CM and focused confinement values. In all cases, focused confinement free energies were

identical within error to the CM results, with |∆∆F | ranging between 0.1 and 0.5 kcal/mol.

Figure 4: HO state convergence for the VAPA peptide in explicit water. Shown is the
value of 〈Uconf〉 as a function of the restraint frequency. CM in black, focused confinement
in red, consistency check in blue; these correspond to the horizontal legs 1 and 2 of the
thermodynamic cycle of Fig. 2a (nν = 56), legs 1a and 2a of Fig. 2b (nν = 30), and legs 1c
and 1d of Fig. 2b (nν = 56), respectively. The HO value of 1

2
NDOFkBT is indicated by the

dashed lines; NDOF is the number of degrees of freedom of the region that is confined, which
differs between CM, focused confinement and the consistency checks. Statistical errors are
less than 0.2 kcal/mol and shown by vertical bars.
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Table 1: Confinement (CM) and focused confinement (FCM) results for the chair to boat conversion of sucrose and the cis to
trans conversion of the VAPA peptide. The conformational free energy difference ∆F was calculated using Eq. 1 for CM and
with Eq. 2 for FCM; ∆∆F denotes the difference between the CM and FCM conformational free energy differences. PB+SASA
and FEP indicate the different ways in which the desolvation free energies were calculated for the explicitly solvated systems;
for reference the values of ∆∆Fdesolv = ∆F2d − ∆F1d (for CM) and ∆∆Fdesolv = ∆F2b − ∆F1b (for FCM) are shown as well.
∆Fumb indicates conformational free energy differences calculated by umbrella sampling. All energies in kcal/mol.

Sucrose VAPA
Explicit Explicit

Vacuum Implicit PB+SASA FEP Vacuum Implicit PB+SASA FEP
∆Frr 0.0 0.0 0.0 0.0 -0.3 -0.1 -0.1 -0.1

CM ∆F1 255.5 ± 0.2 262.9 ± 0.4 266.0 ± 0.3 266.0 ± 0.3 357.4 ± 0.3 362.8 ± 0.4 360.7 ± 0.3 360.7 ± 0.3
∆F2 262.5 ± 0.3 264.5 ± 0.4 267.6 ± 0.3 267.6 ± 0.3 363.8 ± 0.3 366.9 ± 0.5 367.5 ± 0.3 367.5 ± 0.3
∆F1d 0.0 ± 0.0 11.8 ± 0.0 28.1 ± 0.0 17.1 ± 0.0 0.0 ± 0.0 5.9 ± 0.0 18.3 ± 0.0 17.7 ± 0.0
∆F2d 0.0 ± 0.0 20.5 ± 0.0 38.5 ± 0.0 25.3 ± 0.0 0.0 ± 0.0 8.4 ± 0.0 21.4 ± 0.0 21.4 ± 0.0
∆F3 15.5 ± 0.0 15.5 ± 0.0 15.5 ± 0.0 15.5 ± 0.0 8.5 ± 0.0 6.1 ± 0.0 8.5 ± 0.0 8.5 ± 0.0
∆F 8.5 ± 0.4 5.2 ± 0.3 3.6 ± 0.4 5.8 ± 0.4 1.9 ± 0.4 -0.6 ± 0.6 -1.5 ± 0.5 -2.1 ± 0.5
nν 48 48 48 48 56 56 56 56
∆∆Fdesolv 0.0 ± 0.0 8.8 ± 0.0 10.4 ± 0.0 8.1 ± 0.0 0.0 ± 0.0 2.5 ± 0.0 3.1 ± 0.0 3.7 ± 0.0

FCM ∆F1a 118.6 ± 0.2 122.2 ± 0.4 125.3 ± 0.3 125.3 ± 0.3 197.5 ± 0.3 203.0 ± 0.4 201.0 ± 0.3 201.0 ± 0.3
∆F2a 120.8 ± 0.2 123.6 ± 0.4 126.7 ± 0.4 126.7 ± 0.4 202.2 ± 0.3 205.7 ± 0.4 204.5 ± 0.4 204.5 ± 0.4
∆F1b 0.0 ± 0.0 18.9 ± 0.1 36.3 ± 0.1 19.5 ± 0.0 0.0 ± 0.0 6.7 ± 0.0 19.6 ± 0.0 17.2 ± 0.0
∆F2b 0.0 ± 0.0 22.0 ± 0.1 41.6 ± 0.1 22.9 ± 0.0 0.0 ± 0.0 9.2 ± 0.0 24.1 ± 0.0 21.9 ± 0.0
∆F3a 10.3 ± 0.0 10.3 ± 0.0 10.3 ± 0.0 10.3 ± 0.0 6.5 ± 0.0 4.4 ± 0.0 6.5 ± 0.0 6.5 ± 0.0
∆F 8.2 ± 0.3 5.8 ± 0.5 3.7 ± 0.5 5.6 ± 0.5 1.5 ± 0.3 -0.8 ± 0.6 -1.6 ± 0.5 -1.8 ± 0.5
nν 25 25 25 25 30 30 30 30
∆∆Fdesolv 0.0 ± 0.0 3.1 ± 0.1 5.3 ± 0.1 3.4 ± 0.0 0.0 ± 0.0 2.4 ± 0.0 4.5 ± 0.0 4.7 ± 0.0

Check ∆F1c 136.7 ± 0.2 140.7 ± 0.3 140.9 ± 0.2 140.9 ± 0.2 160.2 ± 0.2 160.0 ± 0.3 159.3 ± 0.2 159.3 ± 0.2
∆F2c 141.6 ± 0.2 140.3 ± 0.3 141.3 ± 0.2 141.3 ± 0.2 161.9 ± 0.2 161.1 ± 0.3 162.8 ± 0.2 162.8 ± 0.2
Eq. 5 0.2 ± 0.3 0.0 ± 0.6 -0.2 ± 0.5 -0.2 ± 0.5 -0.2 ± 0.5 -0.1 ± 0.6 0.4 ± 0.5 0.4 ± 0.5
Eq. 6 0.0 ± 0.4 0.5 ± 0.6 -0.4 ± 0.5 -0.4 ± 0.5 -0.2 ± 0.5 0.1 ± 0.7 0.2 ± 0.5 0.2 ± 0.5
Eq. 7 0.3 ± 0.3 0.0 ± 0.4 -0.2 ± 0.3 0.0 ± 0.3 0.3 ± 0.3 0.4 ± 0.4 -0.1 ± 0.3 -0.5 ± 0.3
∆∆F 0.3 ± 0.5 -0.5 ± 0.6 -0.1 ± 0.6 0.2 ± 0.6 0.4 ± 0.5 0.2 ± 0.9 0.1 ± 0.7 -0.3 ± 0.7

∆Fumb 8.6 ± 0.3 5.7 ± 0.4 5.6 ± 0.4 5.6 ± 0.4 1.4 ± 0.3 -0.7 ± 0.4 -1.9 ± 0.5 -1.9 ± 0.5
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Comparison to umbrella sampling results (Table 1 ) showed close agreement within a

fraction of a kcal/mol for all cases, except for sucrose in explicit solvent when the desolvation

free energies were calculated by PB+SASA. A comparison of ∆∆Fdesolv, where ∆∆Fdesolv =

∆F2d − ∆F1d for CM and ∆∆Fdesolv = ∆F2b − ∆F1b for focused confinement, showed that

this disagreement was due to the desolvation free energy. ∆∆Fdesolv is listed in Table 1 with

its constituent components in Table 2. For sucrose PB+SASA overestimates ∆∆Fdesolv by

about 2 kcal/mol in both CM and focused confinement, which equals the discrepancies of ∆F

with umbrella sampling. In contrast, for the peptide PB+SASA and FEP closely agreed, and

the umbrella sampling, CM and focused confinement values for ∆F closely agreed. While

focused confinement and CM results were identical within error for all cases, demonstrating

correctness of focused confinement, the results indicated that PB+SASA should not be used

for the sugar.
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Table 2: Desolvation energy components for explicitly solvated systems. ∆Fdesolv = ∆Fpolar + ∆Fnonpolar for PB+SASA, and
∆Fdesolv = ∆Felec + ∆Fdisp + ∆Frep for FEP. All energies in kcal/mol.

PB+SASA FEP
System State Method ∆Fpolar ∆Fnonpolar ∆Felec ∆Fdisp ∆Frep

Sucrose Chair CM 30.6 ± 0.0 -2.5 ± 0.0 18.0 ± 0.0 27.3 ± 0.0 -28.1 ± 0.0
Sucrose Boat CM 41.1 ± 0.0 -2.6 ± 0.0 27.2 ± 0.0 26.8 ± 0.0 -28.7 ± 0.0
Sucrose Chair FCM 38.9 ± 0.1 -2.6 ± 0.0 22.4 ± 0.0 27.1 ± 0.0 -29.9 ± 0.0
Sucrose Boat FCM 44.2 ± 0.1 -2.6 ± 0.0 25.7 ± 0.0 26.8 ± 0.0 -29.6 ± 0.0
VAPA cis CM 21.8 ± 0.0 -3.5 ± 0.0 21.0 ± 0.0 34.6 ± 0.0 -37.9 ± 0.0
VAPA trans CM 25.3 ± 0.0 -3.9 ± 0.0 24.6 ± 0.0 39.4 ± 0.0 -42.6 ± 0.0
VAPA cis FCM 23.0 ± 0.0 -3.4 ± 0.0 20.6 ± 0.0 34.5 ± 0.0 -37.9 ± 0.0
VAPA trans FCM 28.1 ± 0.0 -3.9 ± 0.0 24.9 ± 0.0 39.5 ± 0.0 -42.5 ± 0.0
Hydrophobin I Open FCM 785.5 ± 0.4 -22.1 ± 0.0 502.8 ± 0.1 219.3 ± 0.0 -146.0 ± 0.0
Hydrophobin I Closed FCM 760.3 ± 0.4 -20.9 ± 0.0 472.1 ± 0.1 207.0 ± 0.0 -127.2 ± 0.0
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Critical to CM and focused confinement is the ability to calculate the "vertical" free

energy ∆F3 or ∆F3a (Fig. 2). ∆F3 corresponds to the free energy difference of two purely

harmonic states, which is known analytically, while ∆F3a corresponds to the free energy

difference of two mixed harmonic-anharmonic states and is not known analytically. By

using the same νmax for each leg (as was done here), ∆F3 equals the energy difference of

the reference states and therefore has no statistical error. In contrast, ∆F3a is obtained

from sampling (Eq. 4) and will therefore have a statistical error. However, Table 1 shows

that in all cases, this error was much less than 0.1 kcal/mol. The reason why ∆F3a can

be readily calculated at high accuracy is illustrated in Fig. 5. As explained in the theory

section, calculation of ∆F3a requires the construction of "chimeric" trajectories. These are

constructed from vacuum trajectories in which the conformationally active region is frozen

while the conformationally inactive region is free to move. In the chimeras, the coordinates

of the active region are swapped. Since by definition, the conformationally inactive regions

sample the same conformational space in each of the original trajectories, large distribution

overlaps and no steric clashes are to be expected for the chimeras. Fig. 5 shows that

these expectations were indeed observed in the simulations. Fig. 5a and b show the sucrose

chimeric trajectories in which no steric clashes and sampling of the same space was observed.

Fig. 5c shows the application of Bennett’s overlapping distribution method27 to the VAPA

peptide, which demonstrates large overlap of the energy distributions (black and red lines).

Consequently the estimated free energy difference (blue line) is constant over a large range

of energy values, and agrees with the MBAR calculated value for ∆F3a.

Table 1 shows that all consistency checks (Eq. 5-7) were passed well within kBT . Together

with the ∆∆F values these checks clearly demonstrate the correctness and accuracy of the

focused confinement method. Table 1 also demonstrates the computational advantage of

focused confinement. The conformationally active region of sucrose consisted of 23 out of

45 atoms, or 51% of the total. The focused confinement free energies closely matched this

number, with values between 46 and 47% of their CM counterparts, while using 48% fewer
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Figure 5: Overlap of mixed harmonic-anharmonic states. a) Chimeric trajectory obtained
by swapping glucose to the chair conformation in the fixed boat - free to move fructose
trajectory. b) Chimeric trajectory obtained by swapping glucose to the boat conformation
in the fixed chair - free to move fructose trajectory. c) Bennett’s overlapping distribution
method27 for the VAPA peptide. In red the value of ln ptrans(∆U) + (∆U/2kBT ) (unitless),
in black ln pcis(∆U) + (∆U/2kBT ) (unitless), and in blue ∆F3a (in kcal/mol) as calculated
from these two curves. Here ∆U = U(rA, y

0) − U(rA, x
0), and p indicates the normalized

probability. Data is shown for CHARMM 36, used for both the vacuum and explicit solvent
treatments.

frequencies. The conformationally active region of the VAPA peptide consisted of 36 out

of 61 atoms, or 59% of the total. ∆F1a and ∆F2a were 56% of ∆F1 and ∆F2, while using

46% fewer frequencies. Despite using significantly fewer frequencies, the statistical errors in

the focused confinement free energies were the same as their CM counterparts. Reduction

of the number of frequencies in CM on the other hand significantly increased the statistical

error: when using the same frequencies as in focused confinement the CM confinement errors

increased between two and fourfold with values well beyond kBT . Overall, these observations

suggest that focused confinement saves computer time in roughly 1 to 1 proportion of the

fraction of conformationally inactive atoms while maintaining the same accuracy.

While sucrose and the VAPA peptide were merely used as test systems, their calculated

free energies show some interesting trends. Vacuum favors the cis conformer of VAPA, while

in solution the trans conformer is favored. This is likely due to two effects. The cis conformer

has an intramolecular hydrogen bond which is absent in the trans conformer (Fig. 3). In

vacuum this extra interaction favors the cis conformer, but less so in solution since the trans

conformer can form hydrogen bonds with the solvent. In addition, the dipole moment across
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the prolyl peptide bond is large in the trans and nearly absent in the cis conformer, hence

water favors the trans and vacuum the cis conformer. While the chair conformer is clearly

favored for sucrose, the free energy difference with the boat conformer is larger in vacuum

than in solution. This is likely due to screening of the solvent.

The high efficiency of focused confinement enables treatment of large systems. This is

illustrated by its application to the loop closing of hydrophobin I (Fig. 1) in explicit water.

When limiting the conformationally active region to the loop (residues 59 to 68), large shifts

in the position of the rest of the protein were observed in the vacuum simulation of the

open state needed for ∆F3a (Fig. 6). This was particularly problematic for regions near

the loop. These shifts were not observed in the vacuum closed state simulation (nor in the

explicit water simulations). Since the non-loop region sampled different positions in the

vacuum closed and open state simulations for this selection of the conformationally active

and inactive regions, the assumption that the non-loop region is conformationally inactive

was invalidated. Consequently, poor distribution overlaps and large statistical errors in ∆F3a

were observed for this setup.

Figure 6: Positional shifts in the vacuum simulation of the open state of hydrophobin I when
limiting the conformationally active region to the loop. In green the open state reference
structure with the loop in blue; in khaki a representative snapshot of the vacuum simulation.

In order to prevent these shifts, the conformationally active region was redefined as the

loop and all Cα atoms of the protein. With this definition the conformationally inactive

region indeed sampled the same space, and small statistical errors for ∆F3a were obtained.

Table 3 summarizes the focused confinement results while Fig. 7a shows that the HO states
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were reached at νmax. Fig. 7b shows the chimeric trajectories: no clashes between the

conformationally active and inactive regions were observed. The calculations show that the

open state is marginally more stable by about 1 kcal/mol. This free energy difference was

obtained with 258.2 million MD equilibration and production steps for the open and 302.8

million for the closed state; the FEP simulations added a total of 72 million production steps.

The hydrophobin I simulations suggest that the workflow should start with the vacuum

simulations for ∆F3a in order to assure that the conformationally active and inactive regions

are properly defined. A proper selection can be readily assessed based on the statistical errors

of ∆F3a. Given the relatively small expense of the vacuum simulations, multiple selections

could be tried before starting the confinement simulations. In order to minimize the expense

of the confinement simulations, one would then pick the selection with low statistical error

that has the least number of conformationally active atoms. While this approach was not

pursued here, it is likely that good overlap for hydrophobin I could have been reached with

fewer Cα atoms in the conformationally active region, which would have reduced the overall

calculation cost.

Table 3: Focused confinement results for the open to closed transition of hydrophobin I in
explicit water. The conformationally active region was chosen as the loop and all Cα atoms.
PB+SASA and FEP indicate the different ways in which the desolvation free energies were
calculated; for reference the values of ∆∆Fdesolv = ∆F2b − ∆F1b are shown as well. All
energies in kcal/mol.

PB+SASA FEP
∆Frr 0.1 0.1
∆F1a 1367.3 ± 0.6 1367.3 ± 0.6
∆F2a 1358.4 ± 0.6 1358.4 ± 0.6
∆F1b 763.4 ± 0.4 576.1 ± 0.1
∆F2b 739.5 ± 0.4 551.8 ± 0.1
∆∆Fdesolv -24.0 ± 0.6 -24.3 ± 0.1
∆F3a -32.2 ± 0.0 -32.2 ± 0.0
∆F 0.8 ± 1.0 1.1 ± 0.9

While hydrophobin I is a large system, its desolvation free energy could be readily cal-

culated by FEP. Fast convergence was aided by the fact that a portion of the molecule (the
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Figure 7: Focused confinement of hydrophobin I in explicit water. The conformationally
active region was chosen as the loop and all Cα atoms. a) HO state convergence. The HO
value of 1

2
NDOFkBT is indicated by the dashed lines. Statistical errors are less than 0.2

kcal/mol and shown by vertical bars. b) Chimeric trajectories. Loop shown in dark grey.

conformationally active region) was held fixed in the FEP simulations. Consistent with the

peptide calculations, ∆∆Fdesolv of the PB+SASA and FEP methods closely agreed (Table

3); therefore the conformational free energy ∆F also agreed between the two desolvation

methods. Given that PB+SASA calculations are much cheaper than FEP simulations, these

observations suggest that PB+SASA with a small grid spacing might be an attractive al-

ternative to FEP for the calculation of peptide and protein desolvation free energies in CM

and focused confinement.

5 Conclusion

The focused confinement method is shown to be an accurate and efficient method for the

calculation of conformational free energy differences in implicit and explicit solvent. This

newly introduced reaction coordinate-free technique uses restrained simulations to transform

the conformationally active part of the molecule to independent harmonic oscillators, while

the rest of the system is left unrestrained and free to move. While this restraining leads

to end points that are mixed harmonic-anharmonic states for which the partition functions

cannot be easily evaluated, the free energy difference between these end points can be readily
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calculated by constructing chimeric trajectories from vacuum simulations. This is due to the

fact that the conformational space of the conformationally active region effectively collapsed

into a single point, while the conformationally inactive region samples the same space in

both end points.

Whether the conformationally active and inactive regions are properly selected can be

readily established from structural overlays and energy distributions of the vacuum end point

simulations; since these calculations are performed in vacuum, they are cheap in terms of

computer time (much cheaper than each of the restraining simulations), and, if needed,

several selections can be tried at low cost.

The free energy cost of restraining part of the molecule is necessarily less than restraining

the entire molecule, and consequently fewer frequencies are needed to accurately bridge the

free energy gap in focused confinement. Therefore, significant amounts of computer time

are saved compared to the traditional confinement method. These savings stem from the

reduction in the number of restraint frequencies and are in proportion to the fraction of

conformationally inactive atoms. The efficiency of the focused confinement method enables

its application to large systems.

Acknowledgement

This work was supported by NSF MCB-1919096. Computer time was provided by USF

Research Computing, sponsored in part by NSF MRI CHE-1531590.

References

(1) Spiriti, J.; Kamberaj, H.; van der Vaart, A. Development and application of enhanced

sampling techniques to simulate the long-time scale dynamics of biomolecular systems.

Int. J. Quantum Chem. 2012, 112, 33–43.

22



(2) Miao, Y.; McCammon, J. A. Unconstrained enhanced sampling for free energy calcu-

lations of biomolecules: a review. Mol. Sim. 2016, 42, 1046–1055.

(3) Valsson, O.; Tiwary, P.; Parrinello, M. In Annual Review of Physical Chemistry, Vol

67 ; Johnson, MA and Martinez, TJ„ Ed.; Annual Review of Physical Chemistry; 2016;

Vol. 67; pp 159–184.

(4) Bernardi, R. C.; Melo, M. C. R.; Schulten, K. Enhanced sampling techniques in molec-

ular dynamics simulations of biological systems. Biochim. Biophys. Acta Gen. Subj.

2015, 1850, 872–877.

(5) Doshi, U.; Hamelberg, D. Towards fast, rigorous and efficient conformational sampling

of biomolecules: Advances in accelerated molecular dynamics. Biochim. Biophys. Acta

Gen. Subj. 2015, 1850, 878–888.

(6) Kaestner, J. Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1,

932–942.

(7) Zuckerman, D. M. In Annual Review of Biophysics, Vol 40 ; Rees, DC and Dill, KA

and Williamson, JR„ Ed.; Annual Review of Biophysics; 2011; Vol. 40; pp 41–62.

(8) van der Vaart, A. Simulation of conformational transitions. Theor. Chem. Acc. 2006,

116, 183–193.

(9) Earl, D.; Deem, M. Parallel tempering: Theory, applications, and new perspectives.

Phys. Chem. Chem. Phys. 2005, 7, 3910–3916.

(10) Wu, D.; Fajer, M. I.; Cao, L.; Cheng, X.; Yang, W. In Computational Approaches for

Studying Enzyme Mechanism, Pt A; Voth, GA„ Ed.; Methods in Enzymology; 2016;

Vol. 577; pp 57–74.

(11) Mitsutake, A.; Sugita, Y.; Okamoto, Y. Generalized-ensemble algorithms for molecular

simulations of biopolymers. Biopolymers 2001, 60, 96–123.

23



(12) Shirts, M. R.; Chodera, J. D. Statistically optimal analysis of samples from multiple

equilibrium states. J. Chem. Phys. 2008, 129, 124105.

(13) Stoessel, J. P.; Nowak, P. Absolute free-energies in biomolecular systems. Macro-

molecules 1990, 23, 1961–1965.

(14) Tyka, M. D.; Clarke, A. R.; Sessions, R. B. An efficient, path-independent method for

free-energy calculations. J. Phys. Chem. B 2006, 110, 17212–17220.

(15) Tyka, M. D.; Sessions, R. B.; Clarke, A. R. Absolute free-energy calculations of liquids

using a harmonic reference state. J. Phys. Chem. B 2007, 111, 9571–9580.

(16) Cecchini, M.; Krivov, S. V.; Spichty, M.; Karplus, M. Calculation of free-energy differ-

ences by confinement simulations. Application to peptide conformers. J. Phys. Chem.

B 2009, 113, 9728–9740.

(17) Ovchinnikov, V.; Cecchini, M.; Karplus, M. A simplified confinement method for cal-

culating absolute free energies and free energy and entropy differences. J. Phys. Chem.

B 2013, 117, 750–762.

(18) Capelli, R.; Villemot, F.; Moroni, E.; Tiana, G.; van der Vaart, A.; Colombo, G.

Assessment of mutational effects on peptide stability through confinement simulations.

J. Phys. Chem. Lett. 2016, 7, 126–130.

(19) Villemot, F.; Capelli, R.; Colombo, G.; van der Vaart, A. Balancing accuracy and cost

of confinement simulations by interpolation and extrapolation of confinement energies.

J. Chem. Theory Comp. 2016, 12, 2779–2789.

(20) Villemot, F.; Peguero-Tejada, A.; van der Vaart, A. Calculation of conformational free

energies by confinement simulations in explicit water with implicit desolvation. Mol.

Sim. 2018, 44, 1082–1089.

24



(21) Esque, J.; Cecchini, M. Accurate calculation of conformational free energy differences

in explicit water: The confinement-solvation free energy approach. J. Phys. Chem. B

2015, 119, 5194–5207.

(22) Roy, A.; Perez, A.; Dill, K. A.; MacCallum, J. L. Computing the relative stabilities

and the per-residue components in protein conformational changes. Structure 2014,

22, 168–175.

(23) Boonstra, S.; Onck, P. R.; van der Giessen, E. Computation of hemagglutinin free

energy difference by the confinement method. J. Phys. Chem. B 2017, 121, 11292–

11303.

(24) Hakanpää, J.; Szilvay, G. R.; Kaljunen, H.; Maksimainen, M.; Linder, M.; Rouvinen, J.

Two crystal structures of Trichoderma reesei hydrophobin HFBI - The structure of

a protein amphiphile with and without detergent interaction. Protein Sci. 2006, 15,

2129–2140.

(25) Weeks, J.; Chandler, D.; Andersen, H. Role of Repulsive Forces in Determining Equi-

librium Structure of Simple Liquids. J. Chem. Phys. 1971, 54, 5237+.

(26) Deng, Y.; Roux, B. Hydration of amino acid side chains: Nonpolar and electrostatic

contributions calculated from staged molecular dynamics free energy simulations with

explicit water molecules. J. Phys. Chem. B 2004, 108, 16567–16576.

(27) Bennett, C. Efficient estimation of free energy differences from Monte Carlo data. J.

Comp. Phys. 1976, 22, 245–268.

(28) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D., Jr.

Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Im-

proved Sampling of the Backbone phi, psi and Side-Chain chi(1) and chi(2) Dihedral

Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273.

25



(29) Guvench, O.; Hatcher, E.; Venable, R. M.; Pastor, R. W.; MacKerell, A. D., Jr.

CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopy-

ranoses. J. Chem. Theory Comput. 2009, 5, 2353–2370.

(30) Raman, E. P.; Guvench, O.; MacKerell, A. D., Jr. CHARMM Additive All-Atom Force

Field for Glycosidic Linkages in Carbohydrates Involving Furanoses. J. Phys. Chem. B

2010, 114, 12981–12994.

(31) Jorgensen, W.; Chandrasekhar, J.; Madura, J.; Impey, R.; Klein, M. Comparison of

simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–

935.

(32) Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.; Pedersen, L. A smooth

particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593.

(33) Brooks, B. R.; Brooks, C. L., III; Mackerell, A. D., Jr.; Nilsson, L.; Petrella, R. J.;

Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.;

Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kucz-

era, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.;

Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.;

York, D. M.; Karplus, M. CHARMM: The Biomolecular Simulation Program. J. Comp.

Chem. 2009, 30, 1545–1614.

(34) Lee, M.; Feig, M.; Salsbury, F.; Brooks, C. New analytic approximation to the standard

molecular volume definition and its application to generalized born calculations. J.

Comp. Chem. 2003, 24, 1348–1356.

(35) MacKerell, A.; Bashford, D.; Bellott, M.; Dunbrack, R.; Evanseck, J.; Field, M.; Fis-

cher, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.;

Lau, F.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.; Prodhom, B.; Reiher, W.;

26



Roux, B.; Schlenkrich, M.; Smith, J.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-

Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling

and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616.

(36) Mackerell, A.; Feig, M.; Brooks, C. Extending the treatment of backbone energetics in

protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein

conformational distributions in molecular dynamics simulations. J. Comp. Chem. 2004,

25, 1400–1415.

(37) Im, W.; Lee, M.; Brooks, C. Generalized born model with a simple smoothing function.

J. Comp. Chem. 2003, 24, 1691–1702.

(38) Green, D. F. Optimized parameters for continuum solvation calculations with carbo-

hydrates. J. Phys. Chem. B 2008, 112, 5238–5249.

(39) Chen, J.; Im, W.; Brooks, C. Balancing solvation and intramolecular interactions: To-

ward a consistent generalized born force field. J. Am. Chem. Soc. 2006, 128, 3728–3736.

(40) Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein fold-

ing. Chem. Phys. Lett. 1999, 314, 141–151.

(41) Torrie, G.; Valleau, J. Non-physical sampling distributions in Monte-Carlo free-energy

estimation - umbrella sampling. J. Comp. Phys. 1977, 23, 187–199.

(42) Cremer, D.; Pople, J. General definition of ring puckering coordinates. J. Am. Chem.

Soc. 1975, 97, 1354–1358.

(43) Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V. H++3.0: automating pK prediction

and the preparation of biomolecular structures for atomistic molecular modeling and

simulations. Nucleic Acids Res. 2012, 40, W537–W541.

27



Graphical TOC Entry

28


